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SECTION I

Introduction and Problem Definition

This report addresses a rather specific problem in the

area of multiconductor transmission theory. Specifically, we

desire to obtain an equivalent circuit in the vicinity of the

junction region of two skewed transmission lines, so that the

coupling of energy from one line to another can be estimated.

It is noted that the term “junction” does not refer to lines

in physical contact, but rather the position of smallest separa-

tion between the lines. The geometry of the problem is shown

in Figure 1.1. It consists of a two—wire transmission line of

characteristic impedance Z~2 passing over another two—wire trans-

mission line of characteristic impedance Z~1. The wires 1 and 2

in Figure 1.1 are both parallel to a perfectly conducting ground

plane and are located at heights of h1 and h2 respectively.

The wires are assumed to be of the same radius, although this is

not essential. Figure 1.2 shows an equivalent geometry with the

image conductors; the relevant distances between source and

observation points are also indicated. As illustrated in this

figure, the two lines are modelled by closed rectangular loops

by introducing the vertical segments at both ends.

The objective is to compute the elements of a coupling

model in the form of an equivalent circuit. In general, for ii

• arbitrary values of 0 in the range of [0 < 0 ~ (~/2)], one

would expect inductive and capacitive coupling between the trans-

mission lines. The special case of 0 = 0 is precluded here

because of the distributed nature of the coupling which cannot

be treated with localized lumped elements. Appendix A includes

_ _ _ _ _ _  
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Figure 1.1. Two ske”ad wires of the same radius
above an image plane.
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Figure 1.2. Equivalent pair of skewed two- .re
transmission lines of length 2L.
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this special case , reported elsewhere [1], for the sake of

completeness.

For values of e in the range of [0 < 0 ~ (11/2) ],

the inductive-capactive coupling may be represented by a

junction equivalent circuit of Figure 1.3. In this figure,

and C2~ are the lumped capacitances in lines 1 and 2

owing to the junction. That is, C
13 

is computed from the

excess line capacitance of line I, due to .~e presence of

line 2, for a distance of sufficient magnitude away from the

- 
junction on both sides. Cmj is the lumped mutual capacitance.

The inductive coupling is shown in the form of a transform&r

comprised of self inductances L1~ and L23, as well as a

mutual inductance Lmj~ 
However, we immediately recognize

that since the wires are assumed to be electrically thin and

perfect conductors, there is negligible reduction in the

self—inductance of each wire, due to the prr~ximity of the

other wire. This implies that L1~ = L2~ = 0 and results

in only inductive coupling via Lmj• Figure 1.4 shows the

coupling model after setting the excess self-inductances to

zero and representing the mutual inductances by appropriatc~

voltage sources. Figure l.5a is essentially the same as

Figure 1.4, showing the equivalent circuit model above the

image plane. In Figure l.5b, we show the symmetric form of

the coupling model and the potentials on all the four lines

with respect to the image plane which is chosen as the

reference potential.
iT. C.R. Paul and A.E. Feather, “Computation of the Trans-

mission Line Inductance and Capacitance Matrices from
the Generalized Capacitance Matrix,” IEEE Trans.
Vol. EMC—18, No. 4, pp. 175—183 , November 1976.
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Figure 1.3. A generalized coupling model Zor the
junction of two skewed transmission lines.

Lin e 2

Line I

Figure 1.4. Coupling model showing the mutual
inductance as voltage sources; (note
that the suI .cript j, denoting the
junction has .Deen dropped).
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The problem at hand then, is to determine the

elements Lm~ 
C1~ C2 and Cm • For ease of data presenta-

tion, we define a set of normalized lumped parameters as

follows.

= Lm/(hiL’1)

— C “h C’1 l’’l 1
(1.1)

,.(n2) — Ii ;, ,.
~~
,

“2 
—

= C /(h C’m m 1 1

The superscript ni in the above equation indicates normali-

zation with respect to the line constants of ‘line 1 and like-

wise for n2. Some preliminary information concerning the two

isolated transmission lines is given below in Table 1. Note

that the image plane is chosen as the reference potential.
TABLE I. PRELIMINARY INFORMATION ABOUT THE TWO ISOLATED

TRANSMISSION LINES.

Parameter Line 1 Line 2

radius a (a<<h1) a (a<<h2)

separation 2h1 2h2 
.1.11

inductance/ unit L’ L’
length 1 2

~~~~~~~~~~~ R.n(2h1/a) ~~~~ £n(2h2/a)

capacitance/unit C’, C’
• length .~. 2

- 21Tc0/& n( 2h 1/a) 
~~2ir c0/Ln (2h 2/a)

characteristic JL’1/C’1 IL’ /C’2impedance 60 Ln (2h1/a) 60 th (2h2/a)

8 
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SECTION II

Mutual Inductance

In this section , we evaluate the mutual inductance

element Lm between the two skewed transmission lines of

Figure 1.2. It is believed that more insight into the

problem 11 j ai~~cd by lookiny •~L Lite skcwed 1ruit~iinissioi~

lines of finite length 2L and later let L tend to

inf~nity. The assumptions made in the following analysis

• are listed below.

L >> h> (long lines) (2.la)

(h, — h < ) >> a (sufficiently apart) (2.lb)

0 < 0 < (ir/2), but 0 + 0 (no distributed (2 . lc)
• interaction)

(~ /~ 01) (charge distribution) 0 ( thin wire approximation

(a/ ~ 0 2 ) (charge distribution) 0 or rotational symmetry)

( 2 . ld)

where h< and h> are respectively smaller and larger of

h1 and h2. With the above assumptions, one can write

the mutual inductance as [2],

L 

~ 

ds~ 
. ~ ~~2 ] (2.2)

where

= free space permeability = 4ir x 10 ’
~ (H/rn), and

C1 and C2 represent the closed (assumed) loops formed

by the two transmission lines. With reference to Figure

1.2, we can formally write

2. R.W.P. 1(ing, “Fundamental Electromagnetic Theory ,”Chapter vi, Dover Publications, Inc., New York, 1963.
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Taking advantage of symmetry , we have

~~ 
r .

~~ 
-

~~Lm ~~ J ds1 
. J ds~ (~

) (2 .3)
BCDF PQRS

TUVP

Since there is no inductive interaction between the

sections of transmission lines that are orthogonal,

equation (2.3) simplifies to

L L

• 
L1~ 

~ 

(0) j  dx f  (
~ 

- 

R12.) 
d~ 

•

+ J dz1 J 
(
~i - 

~
) dz~

J 

(2.4a)

= -
~~~ [cos (0) 11( 0)  + 12(0)] (2.4b)

In view of the assumptions of equation (2.1), the R’s in

the above equation may be approximated by

R12 ~~ [x 2 
+ ~2 — 2x~ cos (0) + (h2 

— h1)
2]½ (2.5a)

R121.~’ [x
2 + ~2 — 2x~ cos (0) + (h2 + h1) J ’

~ (2.5b )

• R1 ~ [(z2 
— z1)

2 + 4L2 sin2 (0/2)]¼ (2.5c)

R2 ~~~~ 
[(z 2 - z1) 2 

+ 4L2 cos2 (0/2)J ½ (2.5d)

~1
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We will now proceed to evaluate the two integrals Ii (0)

and 12 (0) separately . Setting

= I(h~~ 
— h1) and ~ = Ui2 + h1) (2 .6 )

Ii (0 ) is given by

1i~
0
~ 

= J dxf(~~2 2  cos ( O ) + a2 jx2+~
2_2x~ cos ~o~+82

~~~

= f d
x [f( 

1 
- 

1 d~
0 0 

{2 +~
2 :~~ cos ( G ) +a  ~Ix

2+~
2_2x~ cos ( o ) + ~

2 

-:

o (~~~4~
2+2X~ cos ( O ) + a2 

~x2+~ 2+2x~ C05 ( 0 ) + ~
2) ]

J dx [Iii (x~ O) + I11(x~11_o~] 
(2 .7)

where

I (x ,e)  =r ~~ 
1

11 
J !.~ ~ ~

‘(x 2+a2 ) + [_ 2x  cos ( e ) ]~~+~
2

- 1 _ \  
. 

(2 .8 )
cos ( o ) ]~ + ~2 )

This integral may be performed using the result 2.261 of

reference [3] , ii
3~ I.S. Gradshteyn and I .M .  Ryzhik , “Table of Integrals,

Series, and Products ,” Academic Press, New York , 1965.
‘4

11
,~
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I (x ,O)  = Ln 1~~
2
~~

2 2~~ cos ( 0) +L 2 + L— [x cos (O)1~11 (..~~x2+B 2_2xL cos (0) +L 2 
+ L— [x cos (0)])

+ £n ~x
2
+8
2 - x cos ( 0 )

(,~~ 2~~2 - x cos (8)
• (2.9)

= ~FQ;;r_ 
x cos (O)~ ÷ i (x,e)

Ii,~fx
2+a2 - x cos (8)J

• where I~ (O) is the first term on the right side of
• equation (2.9). Therefore,

111bc, 7r—0) = £n[~
ii~8 + x c0~ (9))+ I~ (x.~r—8 ) (2.10)

~Ix +c* + x cos (0)

Substituting the above two equations into equation (2.7), we

obtain,

L L
[1 2 2  2 1 (

• Ii (e)  = 
~ J dx Ln ~

c
2
4
~ 2 

cosec
2 
(8) I (x,8) dx

1. o x +cz cosec (0) J

+ f  I~~(X~ W~ 0) dx 

0 

(2.11)

0

Using the result 2.733. 1 of reference [3 1,

Ii (e) = L th L2+82 cosec2 (0 )  + [ 2 8  arctan f~
’ sin (01

• L+a cosec (8)) •

- 

[
2cx arctan 1L sin (0)~

+ 
[~~n ( 0) + in(n_o)j (2.12)

- 
12
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where i~~( O ) is an integral to be evaluated numerically

and is given by
• 

i~~(O) = J I~~(x , O) dx

= ~n 

[

~~~:~~
:_2x1J cog (0) 4- L2+.L-[x cos (0)1J dx

0 i4x +~ -2xL cos (0) + L +L-[x cos (0)j

(2.13)
It may be shown that, when the lengths of the transmission

lines are large compared to the heights, 
~~~~ 

does not

contribute significantly to the result in equation (2.12).

We still have the second term of equation (2.4a) to compute,

• which accounts for the interaction between the vertical end

wires and it is given by

h h
1 1 112(0) = ) dz~ dz 2 _____________ 

— 

2
0 —h2 (z2—z1)

2 
+ A~ ..~J(z2_z1)

2 
+ A2

(2.14a)

where

A1 
= 2L sin (0/2 ) ;  A2 2L cos (0/2 ) (2 . 14b)

. 7
.

Consider the f i rs t  term on the right side of the above,

h2

Integral = I dz 1 
f dz 2 ( 1 (2.15) 4

0 —h2 ~/(z2
_z
1)
2 + A~J

Using (2.261.2 of Ref. [3]), ;e can evaluate this integral

to be

13
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_ _ _  - -

= f  dz1 [
arcsinh 

(

h2
_z
l) + arcsinh (h2~~1)J

1(8/A 1) (a/A1) 1
= A1 L f arcsinh . (y) dy - f arcsinh (y) d~

j(h 2/A1) (h 2/A1)

1(8/A 1)
= A1 L f arcsinh (y) dy

( a/A1)

u~~rig (2.74 1.2.  of [3] ), we get

= [8 arcsinh (8/A1) 
- a arcsinh (a/A1) -~~

2+A~ +V
f
a2+A2]

(2.16 )

Therefore

• 12 (0) = 4 arcsinh ( 8/A1) — arcsinh ( 8/A1J
-a arcsinh (a/A 1) 

- arcsinh (ct/A2 )]

- ~82 + A 2 _ y (
~2 +]~~~~

+ [V’ct2 + A~ 
j~
2 

+ A~~] (2.17)

Substituting our results for Ii (0) and 12 (0) f rom

equations (2.12) and (2. 17) respectively into equation 4
(2.4b), we finally obtain for the mutual inductance

-

14
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2
I (1 + L csc” (O)(p i i 2

L ~~~~~ L tnI 
L 

~cos (0) + !i (0) +i ( IT — 0 ) ~~cos (0)
m n i  i 2 . i n  n• L 11+ ~— csc2 (0))

L2

+ 
(s~~ (0) arctan (Lsin 8) 2ct 

(e) arctan( L8? 0))cos (0)

+ 8 (arcsinh (8/A1) 
- arcsinh (8/A2))

— a (arcsinh ( ct/A1) - arcsinh (ct/A 2))

- 

(~/B
2 + A 2 _~~/B

2 + A 2)

+ (V
Ici2 

+ A~ - ~[2 + A~
)]

(2.18)

We recall that in the above expression , the various quantities

are

L = half length of the transmission lines

0 = skew angle

8 = (h1 + h2) ; a = 1h 2 — h11
A1 = 2L sin (8/2) ; A2 = 2L cos (8/2)

p = free space permeabilityo

and i~(e), given in equation (2.13), is an integral which

can be evaluated numerically , however sm all its contribution

may be.
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A. Discussion of Results

Equation (2.18) is the mutual inductance of two

skewed transmission lines each of length 2L. It is

interesting, to note that for finite values of heights

h1 and h2 and the skew angle in the range of

0 < 0 < (ir/2), and letting the length of the transmission

lines tend to infinity, the mutual inductance becomes

Lint Lm = P (8-a ) cot (0)

= ~0[(h2+h1) 
— 1h 2—h 11 ] cot (0) H

= 23l~ h< cot (0) (2.19)

with h< being the smaller of (h1 and h2).

This result has been independently verified by

starting the problem with infinitely long lines. It suggests

that if the transmission lines are infinitely long, the mutual

• inductance is a property of only the transmission line with

smaller spacing.

However, under the assumptions outlined in equation

(2.1), equation (2.18) accurately gives the value of the

mutual inductance and is parametrically displayed in Figures

2.1, 2.2, and 2.3. The quantity plotted is the normalized

mutual inductance ~~~~ of equation (1.1) given by

-a

16
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(nl)

- 

L = L
,
/ LhlLiI (dimensionless)

= L
,
/ [h1(12)2~n(_j!)] ( 2 . 2 0 )

All linear dimensions are normalized with respect to h1
by choosing h1 = 1. The radius a is chosen to be .01347

so that th(2h1/a) 5 and it occurs only in the normaliza-

tion procedure. With this choice of normalization,

is a function of three variables, 0 , h2 and L. In

Figures 2.1, 2.2, and 2.3, ~~~~~ is shown plotted as a

function of these three variables respectively. In computing

~~~~ from equation (2.20), the “exact” expression of Lm

given by equation (2.18) is used which includes the contribu- 
S

.

tion from the end wires as well. The two integrals appear-

ing in equation (2.18) have smooth integrands and a simple

Simpson’s rule of integration was found to be adequate.

As a function of the skew angle 0, the mutual in-

ductance in Figure 2.1 goes to zero at 0 = (,r/2), as one

would expect. In this figure, one can see the insensitivity

of the mutual inductance with respect to h2 even for small

0 as the lengths of the transmission line increase. For all

the four cases of varying L, it is seen that for 0 = 0, the

mutual inductance displays a singularity corresponding to the

transmission line or distributed type of interaction.

17
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In Figure 2 .2 , the normalized mutual inductance is

plotted as a function of (h2/h1), for a fixed skew angle

0 and with the length CL/h1) as a parameter. The four values

of 0 considered are = 15°, 20°, 30°, 45°. For all these

cases, the normalized mutual inductance is zero initially

[(h2/h1) = 0] and reaches a peak when [(h2/h1) = 1] and

• monotonically decreases as (h2/h1) is increased beyond the

value of unity. Also, as one would expect, the peak value

itself is decreasing as 0 is increased and the normalized

mutual inductance tends to zero for the orthogonal case of

o = 90°.

Finally in Figure 2.3, the normalized mutual inductance

is shown plotted as a function of the length of the wires

• CL/h1) with the relative height (h2/h1) as a parameter.

Note that the normalized length (L/h1) is plotted on a log-

arithmic scale and the same four values of 0 as before are

considered. These plots show that at the two extreme values

(CL/h1) 0 and (L/h1)>>lJ, the normalized mutual inductance

• tends to values that are independent of (h2/h1). The residual

value when (L/h1) = 0 accounts for the interaction between

the vertical end members of the transmission lines. However,

for large lengths L>>h >, the mutual inductance is seen to

obtain a value which is dependent only on h< (see equation

2.19). We reach an interesting conclusion that, if the 
•

• 21
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• transmission lines are infinitely long, the mutual inductance -

is a property of only the transmission line with the smaller

wire separation. I
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SECTION I I I

Capacitive Coupling

The physical mechanism that justifies the use of a 
I ’

I

capacitive coupling model of Figure 1.5 may be described as

follows. When the two lines are present by themselves and

unperturbed by the other, the total charge per unit length on

the two wires are constants given by 
~~~~~~~ 

and Q’20 ([4]).

The effect of the proximity of one wire on the other results

in a redistribution of charge in the vicinity of the junction

so that the total charges per unit lengths Q~’1(x,0) and

now become position dependent according as

Q.’1(x ,0) = 
~~l0 

+ q ’1 (x , 0)

• 
Q 2~~,0) = + q ’2 ( r , 8)  (3.1)

where the excess total charges per unit length q ’ 1(x ,0) and

q ’2(~ ,0) permit us to derive a capacitive coupling model.

Implicit in such a derivation is an assumption (4 1 that the

excess charges which decay with distance away from the junction

will have an integrated effect and can be represented by lumped

parameters at the junction itself .

We also note here that for the case of 0 = 0, the

total charges per unit length once again become independent of

position, denoted by
•

4. R.W.P. King, “Transmission Line Theory ,” Chapters I and
V , Dover Publications, Inc.,  New York , 1965.

•1 V
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Q’ 1(x , 0) ~ ‘io 
= 

~~~l0 
+ ~~lO~

(3.2)
= 

~~ 20 
+ 

~~
‘ 2o~

where the excess charges for the case of 0 = 0 also are

constants according as

q ’1(x ,0) 
E

(3 3)

• q 2~~,0) q ’20

The entire electrostatic system for all values of 0 is electri-

cally neutral because the image wires carry exact amounts of

opposite charges, i.e.,

= —~ ‘1(x ,0)] ; [~~2,.R,0 = 
_
~‘2 (

~
,0)1

(3 .4 )

[q ’11 (x , 0)  = — q ’1 (x , e) ]  ; [ q ’2~~~C, 0 = _ q ’2 ( l ~, 0 )~

Furthermore, by virtue of symmetry about the junction, all the

charges are even functions in their respective variables, as

shown below.

[~ ‘1(x~
e) = ~‘1(-x,0)] [~~ 2~~’°~ 

= Q 2~~~~, 0)]

(3.5)

= q ’1(— x , 0)] ; [q ’2 ( C , o) = q ’2
(_ ~ , 8) J

For 0 in the range of our interest (0 ~ 0 £ (ir/2)],

the coupled pair of integral equations for the potentials

24
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• V1 and V2 in terms of the linear charge densities may be

written down as,

V1= ~~~~~ j~~’i~~’~ 0) K
11

(X , X ’ )  dx ’ + 
~~ f~~

’2~~~’
0 K12(x,C ’O) d~ ’

(3 .6 a)

V2 = 4~~~J
~ ’1(x’v e) K21(~ ,x’,8) dx ’ + 4~c J 2 ~ ’ ,°~ K22 (~~,~~‘)  d~~’

(3.6b)

where the kernels may be written down by inspection as,

x11cx ,x ’) = ~ 
— 

r1~ ,]; K12(x,C ’,O) = 

~ 
— 

r~2,] 
(3.7a)

• K21 (c, x ’ , e) =[~— — K22(c,c ’) = — 

r~~ ,] 
(3.7b)

with

= [(x—x ’)2 + a2]1”2; r11, = ((x—x ’) 2 + 4h~~] ’~~~
2 (3.8 a)

r12 = (x2+~ ’2—2x~ ’ cos(8) + a2
] 1’2

= [{~ ‘—x cos (9)}2 + (a2 + x2 sin2 (0) }]l/’2 (3.8b)

r12, = [x 2 + c ’ 2 
— 2x~ ’ cos(0) + 82 ] 1h’2

= [{c ’- x cos(0)}2 + (82 + x2 sin2 (0) }] l~’2 (3.8c)

r21 = [x ’2 + ~2 
— 2x’~ cos(0) + a2]1”2

= [{x ’ —
~~~~ cos (8)}2 + {a2 

+ 
2 sin2(8)}]’~’

12 (3.8d)

j r21, = [x ’2 + — 2x’~ cos(0) + 8
2]l~

’2

= [{x’ —
~~~~ cos(0)}

2 + {82 + ~2 sin2(O)})112 (3.8e)

r22 = ((~ .~~t) 2 + a2J ”~
’2 ; r22, = ( ( ~~~c ’ ) 2 + 4h~~]

1”2 (3.8f)

where recall that a = 1h 2 — h1~ and 8 = (h2 + h1) (3.8g)
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Substituting for the total charges Q’1(x,9) and Q’2(r ,0) in

equation (3.6) from equation (3.1), we have

V1 [QI iO (rJ~— fK11(xx ’) dx ’
) 

+ 
~~ 

f Q ’1 (x ’ 9) K 11 (x ~x ’)  dx’

‘
~~~2O 

(4~rc0 
Jx 12

(x~ c ’e) d~)+ 4irc0 •[
~
0
~~2 ’~~6 12(x ,C ’o) d~]

(3.6a)

• 
~~~~2

= [Q’io t4~~o 
JK 21(c,x’,e) dx) + 4

1 

~~~~~~~~~~~ 
dx’

+Q’
20 {~

:
~0 

J x 22
(~.~.) dc ’) + f q ’ 2 (~~’ , 0) K 22 ( C , C ’)  dc’]

—~~~~ (3.6b)

The integrals of the kernel functions are somewhat tedious but •

can be performed to give

• (4
1 JK 11(x i x ’) dx) = 2

1 Ln(__i) S11 (3.7a)

(4 71C0 
JK 22~~~~~~ d c’) = 2

1 ,.n(_~~
) 
~~~~ (3 .7 b)

• 
(~‘~ c, 

f K l2 (x
~ r ’ lo ) d c3= 

~~ 
Ln(~~2

s1fl
2~~~

)
~~~ 2)E  4~T~~

0) (37~~

1 ~ —1. ~~ ( t?sin2 
( O ) + a

2 ’4
~ —f (~ , ~ (3. 7d)

~~~ 
JK21~~,,c’ ,0  dxj  4 nc 0 

t~~ sin ( 0 ) 4 - 8  ) ~~~

26
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Recognizing that Q’ 10 S11 V1 and Q’
20 

S22 = V2 for the

isolated lines, we arrive at the coupled pair of integral

• equations for the excess charges given by,

fq ’1(x ’,e) K11(x ,x’) dx’ + J~~~2~~~~,o K12(x,~~’,8) d~ ’

= C’2V2 f(x,0) (3.8a)

- Jq ’1(x’,o) K21 ,X ,0) dx’ +f~~~2R’,O) K22(C,~~’) dC’

• 
• 

= C’ 1V1 f(C ,0) (3.8b)

• In writing above, we have introduced the unperturbed line

capacitances of the two transmission lines given by

- c’ — ~~~ 
— 

~~ l0~ — ~~lO — 

2,re0 = 
2it e

1 — V1 
— (—V 1) 

— 

V
1 

£n (2h1/a) 
- 1)

1 

( . 9a)

- 

c’ — ~~2O 
— 

~~~20~ — ~~2O — 

21r E 
- 

2mr c 
3 b2 

— V2 
— (—V 2) 

— V2 
— 

£n(2h2/a) 
= 

~2

and the two forcing functions can be written in a shorthand

form as

f(~ ,0) ~ Lnf~~ 
Sjri

2
(0) + (3.10)

sin (0) +

We can now define a capacitive coefficient matrix associated

with the excess charges as

I
j i -

27
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Ikil (x,0) k12 (x~0)] rvil
I I = I I I I (3.11)

L q ’2~~,O)J Lk2l~~
D o) k 22 (C~ 0)J L”2J

so that

k11(x ,0) = (3.12a)

V2 = O

q ’1(x , 0)
k12 (x , 0) = V (3.l2b)

2 v1 = o

4 2~~
,0)

= (3. 12c)
1

k22(c,0) = (3.l2d)

V1 = 0  
-

and the lumped self capacitances in the coupling model are

given by,

= J (k11(x,0) + k12(x,0)J dx

• 

= 2 J (k11(x,0) + k12 (x , 0 ) ]  dx (3.13a)

= J [k22(~ ,o) + k21 (~~, o ) 1  dr

-

= 2 J (k22(~ ,0) + k21(~~, 0 ) J  d~ (3.l3b)
0 

•

F
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= k12(x,0) dx = _ 2J  k
12

(x ,e) dx

(3.13c)

= k21(~ ,0) dC = _ 2f  k12 (c,0) dC

We may now set up the integral equations for the excess

• capacitive coefficients of equation (3.12) by successively

• considering V
1 

= 0 and V2 = 0 in equation (3.8).

1. setting V1 = 0 in equation (3.8) with V2 + 0, but finite,

leads to

f  k12(x
’,e) K11(x ,x ’) dx ’ + fk 22 (~~

I , O ) K12 (x ,~~’ ,0) dC’

= C’ 2 f(x,6) (3.14a)

J k
1~~

(x ’,0) K21(~~,x’,0)dx ’ + Jk22(~~’,O) K22 (~~,~~’) d~ ’ = 0

I (3.l4b)

I 
2. Setting V2 = 0 in equation (3.8) with V1 + 0, but

I finite, leads to

• K11(x,x’) dx’ + fk 21 (c I , 0) K12 (x ,r~’,O) dt ’ = 0

(3.l5 a) 
‘

K21(~~,x ’ , 0) dx ’ + J k 21(c ’ , e ) K 22 (c~~c ’)  d~ ’ •

.1 - = C’1 f(C,0) (3.l5b)

:1
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The remainder of the procedure consists of solving coupled

pairs of equations (3.14) and (3.15) for the excess capaci-

tive coefficients and using them in equation (3.13) to get

the lumped capacitances.

In concluding this formulation, it is observed that

for the special case of 0 = 0, using equations (3.3) and

(3.7) in (3.6), we obtain

V1 = 
~~l0 ~l.l 

+ 
~~~1O ~ll 

+ ~~‘ 2o ~ 12 + q ’20 S12

(3.16)

V2 = 

~~l0 
S21 + q ’10 S21 + 

~~~20 
S22 + q ’20 S22

or, using equation (3.2), (3.16) becomes

V1 
= 

~~~ 
S11 + Q

20 
S
12

(3.17)

V2 = 
~ io  ~ 2l + ~ 20 S22

with
1 f2h1\ 1 1 2h2S11 = 

2irc0 
&n~—__) ; S

22 
= 2ir c0

(3.18)

and

~12 
= S

21 
= 2ir c0 £n(~) 

= 2~c0 
£
fl(

:
:)

These results for 0 = 0, are in complete agreement with the

published results in the literature (see for example El or 5]).

5. EMP Interaction Handbook, Section 2.4.2, to be published
by the Air Force Weapons Laboratory.
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A. Approximate Analytical Solution

We now develop an approximate analytical solution for

the coupled pairs of integral equations (3 .14)  and (3.15).

Rewriting these equations in terms of dimensionless excess

capacitive coefficients, we have

ff i2
(x ’ ,e) K11(x ,x’) dx’ + f f22(C’ ,O) K12(x ,C’ ,O) d~ ’ = f(x,8)

(3.19a)

~ K21(~ ,x ’,O) dx ’ + f f 22 (c ’~~O ) K 22 (~~,C ’ ) d~’ = 0

(3.19b)

and

• Jfii (x~io) X11(x ,x’) dx’ + ff 21 (c ’~~0)  K12(x ,~~’,8) d~ ’ = 0

— 

(3.20a)

• I - ffii(x’io) K21(~ ,x’,0) dx ’ +ff21(Y.0) K22(~ ,C’) d~ ’ = f ( C , 0)

(3 .20b)

where the unknown and normalized excess capacitive coefficients

are defined by 
- 

• •

= k
11

(x ’,e)/C~ , f 12 (x ’ ,0) = k12 (x ’ ,0)/C~ zj J

(3.21)

k21(C’,O)/Cj , f 22 ( C ’ , e)  = k 22 (~~’ ,0)/C~ 

:~
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We now consider solving the coupled integral equation

(3.19) and a similar method of solution will apply to equation

(3.20) also. To begin with, we expand the excess charges per

unit length q~~(x ’ ,8) and Q~~(C’ ,0) in Taylor series

about the points x and C respectively. Then, the leading

and the first correction terms are given by

- 

~~ (x,0)
Q~~(x’~ O) = Q~~(x~0) + (x’ —x ) ~~~~~~

— +

(3.22)

~Q’2 (~~,0)
Q~~( C ’ , 0)  = q~~(c , 0) + ( C ’  — C )  ~~

-
~~

-— +

As a result, the unknown functions in equation (3.19) will have

expansions given by
af

f12(,~’,0) = f12(x ,8) + Cx ’ —x ) ax
12 (x,0) +

(3.23)

f22(C’ ,O) = f22~~,01 + ( C ’  — C )  2 ( C , 0) +

Considering these expansions in the integrals involving the

self kernels in equation (3.19), for instance,

f f 12~ ’ ,0 K11(x,x’) dx’ = A11f12(x,O)

9f12 (x,0) I+ J (x’ —x ) K11(x,x’) dx ’ + ... (3.24 )
-~~~

where, using equation (3.7a) , A11 is a constant given by

A11 = ~~~~~~~ S11 = 2 £n (2h1/a) 
(3.25)

32
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King [2] has shown that all of the terms in equation (3.24)

involving the derivatives of f 12 (x ,e) contribute insignifi-

cantly compared to the first term under the condition that

the radiation from the transmission lines are negligible.

As a consequence of this approximation which is well justified

at low frequencies, the coupled integral equation (3.19) may

be written approximately as

A11 f12(x,0) + f ~~~~~~~~ K12(x,C ’ ,O) dC’ = f(x ,O) (3.26a)

f f12 ’~~~ K21(C,x’,O) dx’ + A22 f22(C,
0) = 0 (3.26b)

where it is recalled that

A11 = 2 Ln(2h1/a) and 
, 

A22 = 2 £n (2h2/a) (3.27)

It is now observed that the above equation can be uncoupled

by straightforward algebraic manipulations to obtain,

A11 f12(x,
O) — 

~~~

-__ f f~2(x’,0) T(x,x ’,O) dx ’ = f(x,8) (3.28)

A22 f22(c ,0) - 
~~~

__ J f22(C’,e) T (C,C’,O) dC’ = ~~~
-__ t(C,0)

(3 .29 )

where the various kernels and the forcing functions are
- 

• given by
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T(x,x’,O) = f K12(x,C ’,O) K21(C’,x ’,O) d C’ (3.30a) :-.

= J K12(x’,C ’,O) K21(~ ,x ’,0) dx ’ (3.30b)

f(x,0) sjn~ (e) + a l

lx sin (~ ) + 8 )

t ( C , 0 )  = f ~~~~~~~~ dC’ = - f f(x’,~ ) K21(C,x’,O) dx’
(3.30d)

similarly,

t(x,O) f T(x,x’,8) dx’ = — J f(C ’,o) K12(x,~~’,O) dC ’

(3.30e)

Once again , using the same approximation as before i.e.,

essentially retaining the leading terms of the Taylor series

expansions of f12 (x’ ,8) about f12 (x, 0), and of, f22 (C ’ , 0)-

about f22 (C, 0), in equations (3.28) and (3.29), we have •

A11 f12(~ ,0) 
— f12(x,0) (t(x~0)/A22) 

= f(x,0)

(3.31)

A22 f22(C,O) 
— f22(~ ,0) (t(C~e)/Al1) 

= (t(C1e)/A11)

or , the approximate analytical solutions of the coupled pair

of integral equation (3.19) are given by

• A22 f(x,0) 1 t 8)
~ [A I1A22 — 

t(x~8)j ~ f22(c? 0)~~[Al1A22~~ t(C~
9)] 

- (1~(3.32 )

• -34
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This procedure of obtaining an approximate analytical

solution can also be applied to the other coupled integral

• equation (3.20) resulting in similar expressions for

f21(C,O) and f11(x ,0). Collecting all the solutions and

making use of equation (3.21), we may write the excess

• capacitive coefficients as

3c11(x ,O) = C~ f11(x,
0) Cj 

[A 11A
°
~~x.e ]  

(3.33a)

A 2• 
k

12(x ,0) = C~ f12(x ,
8) = C~ - t(X 0)] 

(3.33b)

A 1 ~~C ,
0)  1

- 

I 

k
21(C ,8) = c~ ~2~

(
~
,0) Ci - t(C~6 )j  

(3.33c)

k22(C,0) = C~ f22(C,8) = c~ [AllA
0
~~cC ,e ) }  

(3.33d)

and therefore the normalized capacitances may be calculated

• using the above in equation (3.13) along with equation (1.1) ,

(nl) f C1 \ — ~ 1t~~
,8) + A11 f(x,0)1 dx

Cl = 
~h1Cj ) J L 

A11A22 
- t(x,e) J ~ (3.34a)

cr2) = 
(h:~~) I I ~~ 

‘ 

(3.34b)

(‘~~) 
- A11 I EAil A

~ 2
_ t ( c , e) ]  ~~ (3 34c)

~I .
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Equations (3.30) and (3.31) are adequatc in evaluating the

normalized excess capacitive coefficients ~~~~ 
~~~~~~~ 

f12, f 21
and f22) and the normalized lumped capacitive elements of

the equivalent circuit in Figure 1.5. In the following sub—

section , we describe and solve the coupled integral equation

(3.16) or (3.17) by an alternate numerical method by casting

the integral equations into a system of linear equations.

The approximate analytical solution is compared with the

numerical solution in Section 111—C .

a . 4 -

‘I
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B. Numerical Solution

The set of coupled integral equations (3.19) and (3.20)

can also be solved by the method of moments. We may use the

symmetry properties summarized below, to economize the cal-

culations.

= f11(x ,0) (3.35a)

= f 12 (x ,0) (3.35b)

= f21(C,8) (3.35c)

• f22(C , 0) = f
22

(C , 8) (3 .35d)

The infinite integrals of (3.19) and (3 .20 )  become the follow-

ing semi-infinite integrals by using the above symmetry

relations.• J f12~~ ’’~~ G11(x,x ’j dx ’ + J f 22 (c ’ , O) G12 (x,C ’,O) dC ’ = f(x,0)

0 0 (3.36a)

J f12 ’~~~ G21 ( C , x’,O) dx ’ 4 -f  f 22 ( C ’ , e) G22 ( C , C ’) dC ’ = o

0 0 (3.36b)

and

f f11(x’,O) G11(x,x ’) dx ’ + f 21 ( C ’ , e) G12(x ,C ’,O) dC ’ = 0
0 0 (3.37a)

J f11(x ’,8) G21 ( C , x ’ , e) dx’ + f f21(C ’0) G22(C,C ’) dC ’ = f ( c , 0)

0 0 (3.37b)

where the new kernels are

37
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G,1(x,x’) K11(x,x’) + K11(x,x’) (3.38a)

= K12(x ,C’ ,O) + K12(x ,—c ’,e) (3.38b)

G21(C,x’,O) = K21(C,x’,O) + K21(C,—x ’,O) (3.38c)

G22 ( C , C ’ )  K 22 ( C , C ’ )  + K22(C,—C’) 
(3 .38d)

In order to use the moment method , we divide x into

i = 0,1,2, ..., N; and C into i = 0 ,1, 2 , ... , N.
- 

- The values x1 are taken to be equal to for convenience.

The points x.~ and CN are the truncation points for the

: moment method. It is expected that the charge density near

the junction region of the wires changes fairly rapidly, and

decays slowly to zero when x or C is very large. Hence

the two different mesh sizes are considered : from x0 to

x the smaller meshes are used, and from x to XN I weN1 N1 - -

may use large meshes. The breaking point XN 
was found to

1
be very closely related to the right-hand-side vector f ( x ,0 ) .

For brevity, we shall consider equation (3.36). Let us

assume
• I

q~2 = f 12 (x 1, 0) and = f 22 ( C . , 0) (3 .39)

Using the linear basis functions, we find that (3.36) can

be evaluated by

q 12 ~~~~~ 
+ 

~~ 

q~2 ~~~~ = f ( x
3
, 0) (3 40a)
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) = 0 (3.40b)
i—o i=0

where
i x ’ -x

= 6i0 f 
~~~~~ 

Guv Xj?X ’ dx ’
xi_l

xi+1 ~~~~~~~~~~~~~~~~

+ 6iN f x~ —x ~i~ 
Guv (X j~ X ’) dx ’ ; u = 1,2; v = 1,2

X
1 (3.41)

(i if i = k
ik =~~~

if i # k

Since x1 = C1, the variables x and C are interchangable

in equation (3.41). The integrations of (3.41) can be

evaluated analytically. By reviewing equation (3.38), (3.7),

and (3.8), we find that all the integrations in (3.41) are of

the following type:
U

2 r3x’+r4 2 
- 

2 
-

((x’ ~-r 1)
2 

+ r2]
1”2 

dx’ = r
3[~Ju2

_ 2r
lu2+ri +r2

-\/u~~
-2rlu1

:r
~~

+ r 2 

-r 

4’

+ Cr +r r ) Iarcsinh( 2 - arcsinh(21 l
~\14 3 1  

L ~Iç JJ
I (3 .42 )

I
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A total number of (2N + 2) linear equations can be

formulated from equation (3.40) by taking j = 0 ,1,2 , ... , N.

The C2N + 2) unknowns, q~ 2 and can then be readily

solved by matrix methods. The values of f 21 (x 110) and

f 22 (C~~~0) can also be solved in a simil t r manner.

The lumped capacitances can be obtained from equations
• 

(1.1 ) , (3.13) , and (3.18). They are

• 
= 

~~

_ f 
[

~~~1~~~~.o + f 12 (x~ O)] dx

= 

~~ I ~f11(x ,e) + f12 (x,0)I dx (3.43a)

= ~ L [f22 C. e + f 21 (~~~0)]  dç

= 

~~~ 
f [

~ 22~~~~ e~ + f
22~~~r ) ]  dC (3.43b) 

- 
I

c~’~’~ = — 

~~~~

_ f f~~~(r ,e) dC

= — 

~~ £ f 21 ( C , 0) d C (3.43c )

This completes a brief description of the numerical

method of solving the coupled integral equations. In the

following subsection, we compare the approximate analytical

solution with the numerical solution and present the

capacitance data as well. -
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C. Discussion of Results

In this section we present the results of a para-

metric study of the normalized excess charges and the

normalized lumped capacitances in the equivalent circuit

of Figure 1.5. It is recalled that, to obtain the

normalized excess charges, one has to solve a set of

coupled integral equations (3.19) and (3.20). Owing to 
-

•

a lack of experimental data on this problem, and also to

ensure confidence in the solution, the coupled integral

equations have been solved by two different methods. In

Section Ill-A, an approximate analytical solution which

leads to a closed integral form for the excess charges

was presented. On the other hand, Section 111-B described

• a numerical method of solving the same set of coupled

integral equations

In Figures 3.1 to 3.4, we compare the normalized

excess charge distributions along the transmission lines,

obtained by the two methods. This comparison is done

graphically for the four representative cases;

a) (h2/h1) = 1.5, 6 = 15° b) (h2/h1) = 1.5, e = 90°

c) (h2/h1) = 5, 8 = 15° d) (h2/h1) = 5 , e = 90°

The normalized excess charges are plotted as a function

of normalized coordinates (x/h1) and (C/h1), starting

from the junction region and moving along the transmission

• 
lines. It is seen from the Figures 3.1 to 3.4, that for 

-
•

all the four cases, the agreement between the approximate

j 41
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(h
2
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1
) = 1.5 , (a/h1) = 0.01, e = 15°; _______ approximate

analytical solution, numerical solution .

Figure 3.1. Normalized excess charge distributions along
the two transmission lines.
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Figure 3.2. Normalized excess charge distributions along• the two transmission lines.
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Figure 3.3. Normalized excess charge distributions along

• the two transmission lines.
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Figure 3.4. Normalized excess charge distributions along

the two transmission lines.
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analytical and the numerical solution is excellent . Further-

more, as may be expected, the normalized excess charges have

a peak at the junction and decay as one moves away from

the junction.

The normalized excess charges computed from the approxi-

mate analytical solution can then be used in computing the

normalized lumped capacitive elements via equation (3.34) or

(3.43). The capacitance plots are parametrically displayed

in Figures 3.5 and 3.6. ~

• 
-

In Figure 3.5, the normalized lumped capacitances are

plotted as a function of the skew angle which ranges from

small angles to 90°. The case of 0 = 0° is excluded here,

because of the distributed interaction and has been considered
I

elsewhere in this report. As expected, Figure 3.5 shows that

as the height of the top line is increased , the self capac i-

tance terms decrease.

Figure 3.6, graphically shows the normalized lumped

capacitances as a function of the relative height (h2/h1)

with the skew angle 0 as a parameter. Once again, we

see the expected behavior as the skew angle or the relative

• height is varied.
I

I

. :
“I
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Figure 3.5. Normalized lumped capacitances as a function of
skew angle
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f Conclusions

In this report, the problem of obtaining the lumped

equivalent circuit to represent the junction region of a

pair of skewed transmission lines is presented. The

coupling model involves evaluating the inductive and capaci-

tive elements. The mutual inductance is evaluated in a

closed form and has been parametrically displayed. To

obtain the capacitive elements, a set of coupled integral

equations have been formulated for the excess charge dis-

tributions. The integral equations have been solved by an

approximate analytical method and also a numerical method

employing the method of moments. The approximate analytical

• solution uses a Taylor series expansion of the unknown

functions about a variable, and enables one to express the

excess charges in closed form using a single integration.

The two independent calculations of the normalized excess

charge distributions are compared graphically for representa-

tive cases and seen to be in excellent agreement. Once the

excess charge distributions are determined , it is a simple
I-I

matter to evaluate the normalized lumped capacitances. The

results of a parametric study of the capacitance computations

are also presented.
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APPENDIX A

Transmission Line Coupling for the Special Case of 0 = 0

In this appendix, we consider the special case of dis-

tributed interaction between the two transmission lines (see

Figure 1.1) when the skew angle 0 is zero. In other words,

the two wires are parallel to each other and are located at

heights h1 and h2 above a perfectly conducting ground plane.

In this case, one cannot derive a junction equivalent circuit

because of the distributed interaction between the wires.

Using the same notation as in Section III, the total charges

per unit length Q’10 and Q’20 may be related to the

potentials V1 and V2 on the two wires with respect to the

ground plane, via the coefficients of capacitance matrix [K]

given by

1~’o1 [K~~ K121 [Vll
I 1 = 1  I I I  CA.1)
L°’20J LK21 K

22J L”2J
It was seen in Section III that the elements of the coefficients

of elastance matrix [SI are given by

[SI [KJ~~ (A.2) •

i f2h \ 
_ _  

12h \
S1] 2irc

0 
tr4~

._.i
) 

; = 2irc .~ 
Ln~__2-) (A.3) 

•

S12 = 

~21 ~~~ tn(!)= 2irc0 Ln(,~~ 
~ 

h
i) (A
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These results are in complete agreement with the results

reported in the literature (e.g., [1] and (5]). The elements

of the [K] matrix are then given by

K11 = (S22/~) ; K22 (S11/~) (A.5)

K12 = K21 = 
~~
5l2/’~ 

(A.6)

where

It determinant of the S matrix

= 

(2
~~O)2 [tn(~~i)~n(~~a) 

- ~n(!.) Ln (~.)] 
(A.7)

Furthermore, the coefficients of tha inductance matrix

are simply related to the ES] matrix as

EL’] = ic,Eo ES] (A.8)

so that,

= (
~

) ~n(~~~~ ; L’2~ (
~

) ~n(~~a) (A.9)

= L’21 = (~) Ln(~
) 

(A.10) 

-

~~

We have included this special case of 8 = 0 in this

appendix mainly in the interest of completeness. These results

are available in the literature and serve to check the con-

sistency of our formulation in a limiting situation.

-4

t

51/52—

~~~~~~ ~~~~ —- —- ~~~~
— -


